SEMESTER I
LSM3231 PROTEIN STRUCTURE AND FUNCTION

Prerequisite: LSM2211 or LSM2241
Workload: 26 lecture hours + 6 tutorial hours + 18 laboratory hours

Course description:
The main objective is to provide a strong foundation in the study of protein structure and function. The following topics will be covered: Structures and structural complexity of proteins and methods used to determine their primary, secondary and tertiary structures; Biological functions of proteins in terms of their regulatory, structural, protective and transport roles; The catalytic action of enzymes, their mechanism of action and regulation; Various approaches used in studying the structure-function relationship of proteins.

<table>
<thead>
<tr>
<th>S/N</th>
<th>Topics</th>
<th>Lecture hours</th>
</tr>
</thead>
</table>
| 1. | **Introduction**
Protein structures
Overview of protein structure
Structural patterns in protein
Varieties of protein structures
Protein function
Structural diversity reflects functional diversity in globular proteins
Structure-function relationships in selected protein families
Protein folding and molecular chaperones | Maxey Chung 6h |
| 2. | **Advanced enzymology**
Enzymes, enzyme reaction kinetics, mechanism of action, and allosteric control of enzyme activity
Probing structure–function relationships
Chemical modification
Epitope mapping, Site-directed mutagenesis | Theresa Tan 6h |
| 3. | **Methods for determination of protein structures**
Primary structure by Edman degradation and mass spectrometry
Solid phase peptide synthesis and applications of synthetic peptides
Secondary structure by circular dichroism and theoretical methods
Tertiary structure by X-ray diffraction and NMR
Prediction, engineering and design of protein structure | Maxey Chung 4h
Henry Mok 6h |

Total Lectures: 22h
Tutorials: 4h
Practicals 6X3: 18h
Total hours: 44h

REFERENCE BOOKS:
Introduction to Protein Structure (2nd Edition) by Carl Branden and John Tooze;
Introduction to Protein Architecture by Arthur M. Lesk, and
Introduction to Protein Science by Arthur M. Lesk.

MODE OF ASSESSMENT:
CA, 40% (short answer questions); semestral examination, 60% (short answer and long answer questions)

MODULE CO-ORDINATOR:
A/P Maxey Chung (Tel: 6516-3252, E-mail: bchcm@nus.edu.sg)

LECTURERS:
A/P Maxey Chung
A/P Theresa Tan
A/P Henry Mok